Remarks on K(1)-local K-theory

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SOME REMARKS CONCERNING MOD-n K-THEORY

The spectral sequence predicted by A. Beilinson relating motivic cohomology to algebraic K-theory has been established for smooth quasi-projective varieties over a field (cf. [FS], [L1]). Among other properties verified, this spectral sequence has the expected multiplicative behavior (involving cup product in motivic cohomology and product in algebraic K-theory) and a good multiplicative “mod-n...

متن کامل

Some Remarks on Nil Groups in Algebraic K-theory

This note explains consequences of recent work of Frank Quinn for computations of Nil groups in algebraic K-theory, in particular the Nil groups occurring in the K-theory of polynomial rings, Laurent polynomial rings, and the group ring of the infinite dihedral group. 1. Statement of Results Let R be a ring with unit. For an integer q, let KqR be the algebraic K-group of Bass and Quillen. Bass ...

متن کامل

Remarks on logarithmic K-stability

1.1. Log-K-stability Let (X, J) be a Fano manifold, that is, K−1 X is ample. A basic problem in Kähler geometry is to determine whether (X, J) has a Kähler–Einstein metric (see [22]). The existence problem of Kähler–Einstein metric is a special case of the existence problem of constant scalar curvature Kähler (cscK) metric. For the latter, we fix an ample line bundle L on (X, J). We have the fo...

متن کامل

Remarks on Binding Theory

We propose some reformulations of binding principle A that build on recent work by Pollard and Xue, and by Runner et al. We then turn to the thorny issue of the status of indices, in connection with the seemingly simpler Principle B. We conclude that the notion of index is fundamentally incoherent, and suggest some possible approaches to eliminating them as theoretical primitives. One possibili...

متن کامل

Remarks on Punctual Local Connectedness

We study the condition, on a connected and locally connected geometric morphism p : E → S, that the canonical natural transformation p∗ → p! should be (pointwise) epimorphic — a condition which F.W. Lawvere [11] called the ‘Nullstellensatz’, but which we prefer to call ‘punctual local connectedness’. We show that this condition implies that p! preserves finite products, and that, for bounded mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Selecta Mathematica

سال: 2020

ISSN: 1022-1824,1420-9020

DOI: 10.1007/s00029-020-00566-6